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Abstract

This paper presents a parameter-dependent controller design approach for vehicle active suspensions to deal with

changes in vehicle inertial properties and existence of actuator time delays. By defining a parameter-dependent Lyapunov

functional, matrix inequality conditions with reduced conservatism are obtained for the design of controllers. Feasible

solutions can be obtained by solving a finite number of linear matrix inequalities (LMIs) embedded within a genetic

algorithm (GA). Both state feedback and static output feedback controllers can be designed under a unified framework.

Based on the measurement or estimation of the vehicle inertial parameters, a parameter-dependent controller could be

implemented in practice. The presented approach is applied to a two-degree-of-freedom quarter-car suspension model.

Numerical simulations on both bump and random road responses show that the designed parameter-dependent controllers

can achieve good active suspension performance regardless of the variation on the sprung mass and the presence of

actuator time delay.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Vehicle active suspensions have been studied for many years and different methods have been proposed to
improve vehicle suspension performances [1,2]. Ride comfort, handling or road holding capability, and
suspension deflection limitation, are often considered by automotive makers as the most important
performance issues in the design of an advanced vehicle suspension system. These performances, however, are
conflicting in the sense that they involve tradeoff amongst each other. Consequently, multiobjective control of
vehicle suspensions [3–7] has attracted much attention recently because it can reduce the conservatism of the
approach that minimises different performance requirements with one single weighted objective.

Changes in vehicle inertial properties, such as vehicle sprung mass, vehicle centre of gravity, and vehicle
pitch, roll, and yaw moments of inertia about the vehicle centre of gravity, are mostly occurred in sport utility
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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vehicles (SUVs), military and commercial vehicles, and small and light vehicles in which ratio of passenger/
cargo to the vehicle unsprung mass can have a large variation. It has been widely documented that changes in
vehicle inertial properties have direct effects on vehicle ride comfort, handling, and braking performances.
Therefore, to achieve more stringent levels of comfort, safety, and fuel efficiency, an accurate estimation of the
vehicle inertial properties becomes necessary. Currently, both on-line and off-line estimation methods have
been developed to identify the vehicle inertial parameters based on easily obtained information [8–11]. With
the development of accurate estimation on vehicle inertial parameters, parameter-dependent control technique
could be applied to realise robust control of vehicle suspensions regardless of changes in vehicle inertial
parameters.

Practical considerations of the realisation of active suspensions in real-world applications include choosing
appropriate actuators that can fit into the suspension packaging space and satisfy the practical power and
bandwidth requirements, as well as choosing available measurements for feedback control. Compared to the
electromagnetic actuators, electrohydraulic actuators have been considered as one of the most viable choices
for an active suspension due to their high power-to-weight ratio and low cost. Nevertheless, as explained in
Ref. [12], using electrohydraulic actuators to track the desired forces is fundamentally limited in its ability
when interacting with an environment possessing dynamics. In particular, time delays obviously exist in these
actuators when tracking a desired force [12,13]. Neglecting these time delays may affect the control
performance and even render the control system unstable [14,15]. To overcome the actuator time-delay
problem, one method is to design a controller using the integrated system model in which the actuator’s
dynamics are included [16–19]. The other method is to include the actuator time delay into the controller
design process [15,20] and to design a controller that can robustly stabilise the system and can guarantee the
system performance in spite of the existence of time delay. On the issue of choosing available measurements
for feedback control of vehicle suspension, static output feedback control strategy would be the best choice
because it can use the easily measurable variables, such as suspension deflection and suspension travel velocity,
as feedback signals to realise the active vehicle suspensions [21].

Although load-dependent controllers were developed in Ref. [7] to deal with the vehicle sprung mass
variation problem, the actuator time-delay problem is not considered in that work. On the contrary, in the
work of Du and Zhang [15], the actuator time-delay problem was addressed, without considering the vehicle
inertial parameter uncertainties. In this paper, the parameter-dependent control strategy is applied to design
the robust vehicle active suspensions that consider both the vehicle inertial parameter variations and the
actuator time delays. By defining the parameter-dependent Lyapunov functional [22–25], matrix inequalities
with reduced conservatism for designing such kinds of controllers are derived. The feasible solutions can be
obtained by solving a finite number of linear matrix inequalities (LMIs) embedded within a genetic algorithm
(GA). Both state feedback and static output feedback controllers can be designed using the same
methodology. Finally, the presented approach is applied to a two-degree-of-freedom quarter-car suspension
model. Numerical simulations on both bump and random road responses show that the designed parameter-
dependent controller can achieve good active suspension performances in spite of the variation of vehicle
sprung mass and the presence of actuator time delay.

The subsequent parts of this paper are organised as follows. Section 2 presents the problem formulation for
the robust control of vehicle active suspensions. The design approach for the parameter-dependent controller
based on the solvability of LMIs is presented in Section 3. Section 4 presents the design results and
performance evaluation. Finally, we conclude our findings in Section 5.

Notation: Rn denotes the n-dimensional Euclidean space, and Rn�m is the set of all n�m real matrices. For a
real symmetric matrix W , the notation W40 ðWo0Þ is used to denote its positive- (negative-) definiteness.
Also, I is used to denote the identity matrix of appropriate dimensions. To simplify notation, � is used to
represent a block matrix which is readily inferred by symmetry.

2. Problem formulation

In this study, a two-degree-of-freedom quarter-car suspension model shown in Fig. 1 is considered for
controller design. This model has been used extensively in the literature because it can capture many important
characteristics of many complicated suspension models. For the quarter-car suspension model shown in Fig. 1,
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Fig. 1. Quarter-car active suspension model.
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the governing equations of motion for the sprung and unsprung masses can be expressed as

ms €zsðtÞ þ cs½_zsðtÞ � _zuðtÞ� þ ks½zsðtÞ � zuðtÞ� ¼ uðtÞ,

mu €zuðtÞ þ cs½_zuðtÞ � _zsðtÞ� þ ks½zuðtÞ � zsðtÞ� þ kt½zuðtÞ � zrðtÞ� þ ct½_zuðtÞ � _zrðtÞ� ¼ �uðtÞ, (1)

where ms is the sprung mass, which represents the car chassis; mu is the unsprung mass, which represents the
wheel assembly; cs and ks are damping and stiffness of the passive suspension, respectively; kt and ct stand for
compressibility and damping of the pneumatic tyre, respectively; zsðtÞ and zuðtÞ are the displacements of the
sprung and unsprung masses, respectively; zrðtÞ is the road displacement input; uðtÞ represents the active
control force, which is generally provided by means of hydraulic actuator placed between sprung mass and
unsprung mass of vehicle suspension.

By defining the state variable as

xðtÞ ¼ ½x1ðtÞ x2ðtÞ x3ðtÞ x4ðtÞ�
T, (2)

where

x1ðtÞ ¼ zsðtÞ � zuðtÞ; suspension deflection,

x2ðtÞ ¼ zuðtÞ � zrðtÞ; tyre deflection,

x3ðtÞ ¼ _zsðtÞ; sprung mass velocity,

x4ðtÞ ¼ _zuðtÞ; unsprung mass velocity,

Eq. (1) is written in state-space form as

_xðtÞ ¼ AxðtÞ þ B1wðtÞ þ B2uðtÞ, (3)

where xðtÞ 2 R4, wðtÞ 2 R, uðtÞ 2 R, A 2 R4�4, B1 2 R4�1, B2 2 R4�1, and

A ¼

0 0 1 �1

0 0 0 1

�ks=ms 0 �cs=ms cs=ms

ks=mu �kt=mu cs=mu �ðcs þ ctÞ=mu

2
66664

3
77775,

B1 ¼ ½0 � 1 0 ct=mu�
T,
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B2 ¼ ½0 0 1=ms � 1=mu�
T; wðtÞ ¼ _zrðtÞ.

In this paper, the three performance aspects for a quarter-car suspension system are taken into account.

2.1. Ride comfort

Ride comfort can be quantified by the sprung mass acceleration, therefore, the sprung mass acceleration is
chosen as the first control output, i.e.,

z1ðtÞ ¼ €zsðtÞ, (4)

where €zsðtÞ can be derived from Eq. (3). In order to design an active suspension to perform adequately in a
wide range of shock and vibration environments, the H1 norm is chosen as the performance measure since
H1 norm of a linear time-invariant (LTI) system is equal to the energy-to-energy gain and its value actually
gives an upper bound on the root-mean-square (rms) gain. Hence, our goal is to minimise the H1 norm of the
transfer function Tz1w from the disturbance wðtÞ to the control output z1ðtÞ to improve the ride comfort
performance.

2.2. Suspension deflection limitation

In order to avoid damaging vehicle components and generating more passenger discomfort, the active
suspension controller must be capable of preventing the suspension from hitting its travel limit. Therefore, we
need to guarantee the suspension deflection

jzsðtÞ � zuðtÞjpzmax, (5)

where zmax is the maximum suspension deflection hard limit, under any road disturbance input and vehicle
running conditions. The suspension travel space does not need to be minimal but its peak value needs to be
constrained. Since an H1 norm of a mathematical function in time-domain actually defines the peak value of
the function, i.e.,

kzk19 sup
t2½0;1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zTðtÞzðtÞ

p
, (6)

it is able to optimise the H1 norm of the suspension deflection output under the energy-bounded road
disturbance input, that is,

kwk29

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1
0

wTðtÞwðtÞdt

s
o1, (7)

i.e., w 2 L2½0;1Þ, to realise the hard requirement for the suspension deflection. This is generalised H2 ðGH2Þ

or energy-to-peak optimisation problem [26].

2.3. Road holding ability

In order to ensure a firm uninterrupted contact of wheels to road, the dynamic tyre load should not exceed
the static one [27], i.e.,

ktðzuðtÞ � zrðtÞÞo9:8ðms þmuÞ. (8)

This is also a peak value optimisation problem which can be dealt with the same way as the suspension
deflection. Hence, we define the hard constraints on the suspension deflection and the tyre load as the second
control output, i.e.,

z2ðtÞ ¼
ðzsðtÞ � zuðtÞÞ=zmax

ktðzuðtÞ � zrðtÞÞ=9:8ðms þmuÞ

" #
. (9)
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In summary, the vehicle suspension control system is described as

_xðtÞ ¼ AxðtÞ þ B1wðtÞ þ B2uðtÞ,

z1ðtÞ ¼ C1xðtÞ þD12uðtÞ,

z2ðtÞ ¼ C2xðtÞ,

yðtÞ ¼ CxðtÞ, (10)

where yðtÞ 2 Rn is the measurement output, n ð1pnp4Þ is the number of measurement variables, C1 2 R1�4,
C2 2 R

2�4, D12 2 R1, and

C1 ¼ ½�ks=ms 0 � cs=ms cs=ms�; D12 ¼ 1=ms; C2 ¼
1=zmax 0 0 0

0 kt=9:8ðms þmuÞ 0 0

" #
.

Matrix C 2 Rn�4 is defined in terms of the available measurements. For state feedback controller design,
C ¼ I .

When changes in vehicle inertial properties and actuator time delays are considered in Eq. (10), the vehicle
model becomes an uncertain model with input delay and this model can be expressed as a parameter-
dependent model given by

_xðtÞ ¼ AðaÞxðtÞ þ B1ðaÞwðtÞ þ B2ðaÞuðt� tÞ,

z1ðtÞ ¼ C1ðaÞxðtÞ þD12ðaÞuðt� tÞ,

z2ðtÞ ¼ C2ðaÞxðtÞ,

yðtÞ ¼ CxðtÞ,

xðtÞ ¼ fðtÞ; 8t 2 ½�t; 0�, (11)

where t is the actuator time delay satisfying 0otpt̄, where t̄ is the delay bound, fðtÞ is the initial condition.
Matrices AðaÞ, B1ðaÞ, B2ðaÞ, C1ðaÞ, C2ðaÞ, and D12ðaÞ are functions of a which is the uncertain parameter
vector.

Assume matrices AðaÞ, B1ðaÞ, B2ðaÞ, C1ðaÞ, C2ðaÞ, and D12ðaÞ are constrained within the polytope P given by

P ¼

ðA;B1;B2;C1;C2;D12ÞðaÞ :

ðA;B1;B2;C1;C2;D12ÞðaÞ ¼
PN
i¼1

aiðA;B1;B2;C1;C2;D12Þi;

PN
i¼1

ai ¼ 1; aiX0; i ¼ 1; . . . ;N :

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, (12)

It is clear from Eq. (12) that the knowledge of the value of ai defines a precisely known system (11) inside the
polytope P described by the convex combination of its N vertices. Throughout the paper, the vertices of the
polytope P are denoted as Ai;B1i;B2i;C1i;C2i;D12i, i ¼ 1; . . . ;N: In practice, based on the developed
identification method [11], the inertial parameters could be measured or estimated on-line so that the value of
ai can be found.

In this paper, the aim of the robust active suspension design is to find a parameter-dependent control law

uðtÞ ¼ KðaÞyðtÞ ¼ KðaÞCxðtÞ ¼
XN

i¼1

aiKi

 !
CxðtÞ;

XN

i¼1

ai ¼ 1; aiX0; i ¼ 1; . . . ;N, (13)

where Ki 2 R
1�n is the control gain matrix to be designed, such that the closed-loop system given by

_xðtÞ ¼ AðaÞxðtÞ þ B1ðaÞwðtÞ þ B2ðaÞKðaÞCxðt� tÞ,

z1ðtÞ ¼ C1ðaÞxðtÞ þD12ðaÞKðaÞCxðt� tÞ,

z2ðtÞ ¼ C2ðaÞxðtÞ,

xðtÞ ¼ fðtÞ; 8t 2 ½�t; 0�, (14)
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has the following properties: (i) the closed-loop system (14) is asymptotically stable; (ii) the performance
kTz1wk1og1 is minimised subject to kz2k1og2kwk2 for all non-zero w 2 L2½0;1Þ and the prescribed constant
g240, where Tz1w denotes the closed-loop transfer function from the road disturbance wðtÞ to the control
output z1ðtÞ.

3. Parameter-dependent controller design

The sufficient conditions for the robust asymptotically stable of closed-loop system (14) and performance
requirements can be derived as follows.

Define a parameter-dependent Lyapunov–Krasovskii functional candidate as

V ðt; aÞ9xTðtÞPðaÞxðtÞ þ
Z 0

�t

Z t

tþs

_xTðyÞQðaÞ _xðyÞdyds, (15)

where

PðaÞ ¼
XN

i¼1

aiPi; QðaÞ ¼
XN

i¼1

aiQi (16)

and Pi 2 R4�4, Pi ¼ PT
i 40, Qi 2 R4�4, Qi ¼ QT

i 40 are matrices to be determined. Then, the derivative of
V ðt; aÞ along the solution of system (14) is given by

_V ðt; aÞ ¼ _xTðtÞPðaÞxðtÞ þ xTðtÞPðaÞ _xðtÞ þ t _xTðtÞQðaÞ _xðtÞ �
Z t

t�t
_xðyÞQðaÞ _xðyÞdy

p _xTðtÞPðaÞxðtÞ þ xTðtÞPðaÞ _xðtÞ þ t̄ _xTðtÞQðaÞ _xðtÞ �
Z t

t�t
_xðyÞQðaÞ _xðyÞdy

¼
1

t

Z t

t�t
Fðt; yÞdy, (17)

where Fðt; yÞ ¼ _xTðtÞPðaÞxðtÞ þ xTðtÞPðaÞ _xðtÞ þ t̄ _xTðtÞQðaÞ _xðtÞ � t _xðyÞQðaÞ _xðyÞ: By the Newton–Leibniz
formula, we have

xðtÞ � xðt� tÞ ¼
Z t

t�t
_xðyÞdy. (18)

Then, for any matrices

RðaÞ ¼
XN

i¼1

aiRi; SðaÞ ¼
XN

i¼1

aiSi; TðaÞ ¼
XN

i¼1

aiTi, (19)

where Ri 2 R4�4, Si 2 R4�4, and Ti 2 R4�4, we have

2

t

Z t

t�t
½xTðtÞRðaÞ þ xTðt� tÞSðaÞ þ _xTðtÞTðaÞ�½xðtÞ � xðt� tÞ � t _xðyÞ�dy ¼ 0. (20)

Moreover, according to Eq. (14), for any matrices U 2 R4�4, V 2 R4�4, and W 2 R4�4, we have

2

t

Z t

t�t
½xTðtÞU þ xTðt� tÞV þ _xTðtÞW �½ _xðtÞ � AðaÞxðtÞ � B1ðaÞwðtÞ � B2ðaÞKðaÞCxðt� tÞ�dy ¼ 0. (21)

Adding Eqs. (20) and (21) to Eq. (17) yields

_V ðt; aÞp
1

t

Z t

t�t
ZTðt; yÞPðaÞZðt; yÞdy, (22)
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where ZTðt; yÞ ¼ ½xTðtÞ xTðt� tÞ _xTðtÞ _xTðyÞ wTðtÞ� and

PðaÞ ¼

P11 P12 P13 �tRðaÞ �UB1ðaÞ

� P22 P23 �tSðaÞ �VB1ðaÞ

� � P33 �tTðaÞ �WB1ðaÞ

� � � �tQðaÞ 0

� � � � 0

2
6666664

3
7777775
, (23)

where

P11 ¼ RðaÞ þ RðaÞT �UAðaÞ � ATðaÞUT,

P12 ¼ � RðaÞ þ STðaÞ �UB2ðaÞKðaÞC � ATðaÞVT,

P13 ¼ PðaÞ þU þ TTðaÞ � ATðaÞWT,

P22 ¼ � SðaÞ � STðaÞ � VB2ðaÞKðaÞC � CTKTðaÞBT
2 ðaÞV

T,

P23 ¼ V � TTðaÞ � CTKTðaÞBT
2 ðaÞW

T,

P33 ¼ t̄QðaÞ þW þWT (24)

and the asterisk symbol ð�Þ represents a term that is induced by symmetry. For example, the last row of
Eq. (23) is induced as ½�BT

1 ðaÞU
T � BT

1 ðaÞV
T � BT

1 ðaÞW
T 0 0�: It is noted from Eq. (22) that if PðaÞo0, we

have _V ðt; aÞo0, then system (14) with wðtÞ ¼ 0, parameter uncertainty (12), and time delay t satisfying 0otpt̄
is robust asymptotically stable for all uncertain parameter a.

Next, we will establish the H1 performance of the uncertain delay system under zero initial condition, that
is, fðtÞ ¼ 0; 8t 2 ½�t; 0�, and V ðt; aÞjt¼0 ¼ 0: Consider the following index:

J19
Z 1
0

½zT1 ðtÞz1ðtÞ � g21wTðtÞwðtÞ�dt, (25)

then, for any non-zero w 2 L2 0;1½ Þ, there holds,

J1p
Z 1
0

½zT1 ðtÞz1ðtÞ � g21wTðtÞwðtÞ�dtþ V ðt; aÞjt¼1 � V ðt; aÞjt¼0

¼

Z 1
0

½zT1 ðtÞz1ðtÞ � g21wTðtÞwðtÞ þ _V ðt; aÞ�dt. (26)

After some algebraic manipulations, we obtain

zT1 ðtÞz1ðtÞ � g21w
TðtÞwðtÞ þ _V ðt; aÞp

1

t

Z t

t�t
ZTðt; yÞP̄ðaÞZðt; yÞdy, (27)

where

P̄ðaÞ ¼

P11 þ CT
1 ðaÞC1ðaÞ P12 þ CT

1 ðaÞD12ðaÞKðaÞC P13 �tRðaÞ �UB1ðaÞ

� P22 þ ðD12ðaÞKðaÞCÞ
T
ðD12ðaÞKðaÞCÞ P23 �tSðaÞ �VB1ðaÞ

� � P33 �tTðaÞ �WB1ðaÞ

� � � �tQðaÞ 0

� � � � �g21

2
6666664

3
7777775
. (28)
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Then, if P̄ðaÞo0, we have zT1 ðtÞz1ðtÞ � g21w
TðtÞwðtÞ þ _V ðt; aÞo0, therefore J1o0, and hence kz1k2og1kwk2 is

satisfied for any non-zero w 2 L2½0;1Þ: Applying the Schur complement, P̄ðaÞo0 is equivalent to

P̂ðaÞ ¼

P11 P12 P13 �RðaÞ �UB1ðaÞ CT
1 ðaÞ

� P22 P23 �SðaÞ �VB1ðaÞ ðD12ðaÞKðaÞCÞ
T

� � P33 �TðaÞ �WB1ðaÞ 0

� � � �t̄�1QðaÞ 0 0

� � � � �g21 0

� � � � � �I

2
6666666664

3
7777777775
o0. (29)

Now substitute PðaÞ, QðaÞ defined in Eq. (16) and RðaÞ, SðaÞ, TðaÞ defined in Eq. (19) into P̂ðaÞ, we obtain

P̂ðaÞ ¼
XN

i¼1

a2i P̂ii þ
XN�1
i¼1

XN

j¼iþ1

aiajP̂ij, (30)

where

P̂ii ¼

P11ii
P12ii

P13ii
�Ri �UB1i

CT
1i

� P22ii
P23ii

�Si �VB1i
ðD12i

KiCÞ
T

� � P33ii
�Ti �WB1i

0

� � � �t̄�1Qi 0 0

� � � � �g21 0

� � � � � �I

2
6666666664

3
7777777775
, (31)

P11ii
¼ Ri þ RT

i �UAi � AT
i UT,

P12ii
¼ � Ri þ ST

i �UB2i
KiC � AT

i VT,

P13ii
¼ Pi þU þ TT

i � AT
i WT,

P22ii
¼ � Si � ST

i � VB2i
KiC � ðB2i

KiCÞ
TVT,

P23ii
¼ V � TT

i � ðB2i
KiCÞ

TWT,

P33ii
¼ t̄Qi þW þWT (32)

and

P̂ij ¼

P11ij
P12ij

P13ij
�ðRi þ RjÞ �UðB1i

þ B1j
Þ ðC1i

þ C1j
Þ
T

� P22ij
P23ij

�ðSi þ SjÞ �V ðB1i
þ B1j

Þ ðD12i
KjC þD12j

KiCÞ
T

� � P33ij
�ðTi þ TjÞ �W ðB1i

þ B1j
Þ 0

� � � �t̄�1ðQi þQjÞ 0 0

� � � � �2g21 0

� � � � � �2I

2
6666666664

3
7777777775
, (33)

where

P11ij
¼ ðRi þ RjÞ þ ðRi þ RjÞ

T
�UðAi þ AjÞ � ðAi þ AjÞ

TUT,

P12ij
¼ � ðRi þ RjÞ þ ðSi þ SjÞ

T
�UðB2i

KjC þ B2j
KiCÞ � ðAi þ AjÞ

TVT,

P13ij
¼ ðPi þ PjÞ þ 2U þ ðTi þ TjÞ

T
� ðAi þ AjÞ

TWT,



ARTICLE IN PRESS
H. Du et al. / Journal of Sound and Vibration 317 (2008) 537–556 545
P22ij
¼ � ðSi þ SjÞ � ðSi þ SjÞ

T
� V ðB2i

KjC þ B2j
KiCÞ � ðB2i

KjC þ B2j
KiCÞ

TVT,

P23ij
¼ 2V � ðTi þ TjÞ

T
� ðB2i

KjC þ B2j
KiCÞ

TWT,

P33ij
¼ t̄ðQi þQjÞ þ 2W þ 2WT. (34)

Therefore, to ensure P̂ðaÞo0, it is equivalent to simultaneously guaranteeing

P̂iio0, (35)

for i ¼ 1; . . . ;N, and

P̂ijo0, (36)

for i ¼ 1; . . . ;N � 1, and j ¼ i þ 1; . . . ;N:
Furthermore, using Schur complement, the feasibility of the following inequality:

PðaÞ CT
2 ðaÞ

C2ðaÞ g22=g
2
1

" #
40 (37)

guarantees CT
2 ðaÞC2ðaÞog22=g

2
1PðaÞ. At the same time, it can be derived from Eqs. (15) and (25) that

xTðtÞPðaÞxðtÞog21
R t

0
wTðsÞwðsÞds if P̂ðaÞo0 is guaranteed. Then, it can be easily established from Eqs. (14) and

(37) that for all tX0,

zT2 ðtÞz2ðtÞ ¼ xTðtÞCT
2 ðaÞC2ðaÞxðtÞog22=g

2
1x

TðtÞPðaÞxðtÞog22

Z t

0

wTðsÞwðsÞdspg22

Z 1
0

wTðsÞwðsÞds. (38)

Taking the supremum over tX0 yields kzk1og2kwk2 for all w 2 L2½0;1Þ, that is, the GH2 performance is
established.

Similarly, to guarantee Eq. (37), it is equivalent to ensuring

Pi CT
2i

C2i
g22=g

2
1

" #
40, (39)

for i ¼ 1; . . . ;N, and

Pi þ Pj ðC2i
þ C2j

Þ
T

C2i
þ C2j

2g22=g
2
1

" #
40, (40)

for i ¼ 1; . . . ;N � 1, and j ¼ i þ 1; . . . ;N:
In summary, if there exist matrices Pi40, Qi40, Ri, Si, Ti, Ki, i ¼ 1; . . . ;N, matrices U , V , W and scalars

g140, g240 such that matrix inequalities (35), (36), (39), and (40) are satisfied simultaneously, then, closed-
loop system (14) is asymptotically stable with the performance kTz1wk1 og1 and kz2k1og2kwk2:

When Ki is unknown, matrix inequalities (35) and (36) are non-convex, and cannot be resolved using convex
optimisation algorithm. However, for the state feedback control case, i.e., C ¼ I , two possible approaches
may be used to design the controller. One possible method is to try to use some matrix inequalities to
transform the non-convex optimisation problem to the convex optimisation problem [28]. Another possible
method is to use the cone complementarity linearisation (CCL) method to solve the controller design problem
as that done in Ref. [29]. Nevertheless, for the present non-convex optimisation problem, finding an
appropriate matrix bounding inequality and designing a static output feedback controller are not
straightforward using the two methods mentioned earlier. On the other hand, to this kind of problem, GA
is found to be very effective [30]. Hence, in this paper, when we assume t̄ is given, we will use GA to solve the
problem of

min
Ki

g1 subject to LMIs ð35Þ; ð36Þ; ð39Þ; and ð40Þ, (41)

where Ki is initially randomly generated by GA and then evolved in terms of the objective presented in
Eq. (41). For a known Ki, matrix inequalities (35), (36), (39), and (40) are LMIs and can be efficiently resolved
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Fig. 2. Flow diagram of the proposed GA/LMI algorithm.
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using Matlab LMI Toolbox. The flow diagram of the proposed GA/LMI algorithm for problem (41) is
outlined in Fig. 2.

In Fig. 2, parameter encoding is used to convert the feedback gain matrix Ki; i ¼ 1; . . . ;N, into a row vector
with binary-coded method. Population initialisation is used to randomly generate an initial population of Np

chromosomes for Ki within a given search space. Much attention is paid to the objective evaluation step. In
this step, the initial population produced in previous step is decoded into real value for every controller gain
matrix Kij, j ¼ 1; 2; . . . ; Np. If problem (41) with Kij is feasible, then determine the minimal g1j by solving
LMIs (35), (36), (39), and (40), and take every g1j as the objective value corresponding to Kij and associate
every Kij with a suitable fitness value according to rank-based fitness assignment approach, and then go to
next step. If problem (41) with Kij is infeasible, the objective value corresponding to Kij will be assigned a large
value in order to reduce its opportunity to be survived in the next generation. Since for a feasibility problem
defined by LMI constraint of the form LðxÞoRðxÞ, where x is a feasible value of the vector of decision
variables, a feasible solution can be found by using the auxiliary convex program, i.e., minimise b subject to
LðxÞoRðxÞ þ bI , the solution to the LMI LðxÞoRðxÞ is feasible if and only if the global minimum of b is
negative, and the value of b can indicate the closeness of the decision variable to the solution. Therefore, a
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large value will be associated to the value of b so that more potential Kij can be evolved to find the solution.
Tournament selection, uniform crossover, bit mutation, and elitist reinsertion are standard evolutionary
operators, which can be found in most references about GA. When the evolution process repeats for Ng

generations, the algorithm stops, and the best chromosome is decoded into realvalues to produce again the

control gain matrix Ki. At last, the obtained parameter-dependent control gain is given as KðaÞ ¼
PN

i¼1aiKi,PN
i¼1ai ¼ 1, aiX0, i ¼ 1; . . . ;N:
It is noted that GA is an evolutionary algorithm with built-in randomness. It cannot guarantee to find the

optimal results every time. Hence, running the same algorithm for many times to find the possible optimal
results is often necessary. In addition, if the presented GA/LMI algorithm cannot obtain a solution to a given
problem after running several times, some parameters used in the algorithm, such as the population size, the
controller parameter search space, the time delay bound, and the uncertain parameter variation range, should
be modified. However, there is no guarantee that a suitable solution can be located if the feasible solution set
is small.
4. Application to quarter-car suspension control

Now, we will apply the proposed approach to design the parameter-dependent controller for a quarter-car
suspension model shown in Fig. 1. The parameters of the quarter-car suspension model selected for this study
are listed in Table 1 and the maximum suspension deflection is defined as zmax ¼ 0:08m.

In this example, only vehicle sprung mass ms is assumed to be varying due to vehicle load variation and ms

can fluctuate around its nominal value by 20%. The relationship between the uncertain parameter vector
a9½a1; a2� and the estimation of sprung mass ms is given as

a1 ¼
1=ms � 1=ms max

1=ms min � 1=ms max
; a2 ¼

1=ms min � 1=ms

1=ms min � 1=ms max
, (42)

where ms max and ms min denote the maximum and the minimum sprung mass allowable, respectively.
It can be seen from Eq. (42) that a1 þ a2 ¼ 1 and a1X0, a2X0: Using the above-defined vector a, the
parameter-dependent model shown in Eq. (12) can be defined. The actuator time delay bound t̄ ¼ 50ms is
assumed. The basic GA parameters used in this paper are given as the population size Np ¼ 80; the probability
of crossover pc ¼ 0:8; the probability of mutation pm ¼ 0:02; and the maximum generation Ng ¼ 300: The
controller parameter search space is defined as ½�104 104� and the algorithm is independently run 50 times for
each case.

In order to validate the designed vehicle suspension performance in time domain, examinations of the
response quantities will be done to evaluate the suspension characteristics taking into account the shock and
vibration [1] road profiles. In this section, two kinds of controller design problems will be studied.
4.1. Full state feedback control case

In this case, we assume that all the state variables defined in Eq. (2) for a quarter-car suspension model are
measurements available, we can design a full state feedback parameter-dependent controller by solving the
problem (41). The obtained controller gains are given as

K1 ¼ 103 � ½�2:8529 2:8372 � 2:6676 � 0:0435�; K2 ¼ 103 � ½�2:9608 2:8117 � 2:4160 � 0:0469�.

The performance of active suspension with the designed controller is evaluated via following simulations.
Table 1

Parameter values used in a quarter-car suspension model

Parameter ms ks cs kt ct mu

Value 320 kg 18 kN/m 1kN s/m 200kN/m 0 40 kg
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Firstly, an isolated bump in an otherwise smooth road surface is used. The corresponding ground
displacement for the wheel is given by

zrðtÞ ¼

a

2
1� cos

2pv0

l
t

� �� �
; 0ptp

l

v0
;

0; t4
l

v0
;

8>>><
>>>:

(43)

where a and l are the height and the length of the bump. We choose a ¼ 0:1m, l ¼ 10m, and the vehicle
forward velocity as v0 ¼ 45 km=h.

When actuator time delay is zero, i.e., t ¼ 0ms, the bump responses of the passive suspension and the active
suspension are compared in Fig. 3, where bump responses of the sprung mass acceleration, suspension
deflection, tyre deflection, and active force are plotted. For clarity, only the nominal case where the sprung
mass is used as its nominal value, 320 kg, and the two-vertex cases where the sprung mass is used as its
maximum value, 384 kg, and its minimum value, 256 kg, respectively, are plotted. It can be seen from Fig. 3
that all the responses of the sprung mass acceleration for active suspension are lower than those of the passive
suspension no matter what value the sprung mass is. Compared to the passive suspension, the suspension
deflection and the tyre deflection of active suspension are all guaranteed to be less than their hard limits as
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Fig. 3. Bump response for full state feedback control case with time delay t ¼ 0ms. The legends shown in upper-left and lower-right plots

are used for all plots in this figure.
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Table 2

Comparison of maximum peak value for bump response (full state feedback control case)

Passive Active

t ¼ 0ms t ¼ 50ms

ms (kg) 256 320 384 256 320 384 256 320 384

_x3max ðm=s2Þ 5.2255 4.8756 4.4959 2.5649 2.4700 2.3771 2.6043 2.5978 2.5570

x1max (m) 0.0681 0.0799 0.0889 0.0481 0.0533 0.0578 0.0396 0.0446 0.0502

x2max (m) 0.0070 0.0080 0.0087 0.0036 0.0042 0.0048 0.0038 0.0046 0.0052

umax (N) – – – 687.05 706.18 708.42 705.94 742.23 766.46
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those defined in Eqs. (5) and (8) in spite of the large bump energy. In addition, the active force is within a
reasonable range which can be generated by a hydraulic actuator in practice. It is confirmed that the designed
robust active suspension can realise the good suspension performance when driving over a pronounced bump
road regardless of the sprung mass variation.

When actuator time delay is 50ms, the bump responses of the passive suspension and the active suspension
are compared in Fig. 4, where bump responses of the sprung mass acceleration, suspension deflection, tyre
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deflection, and active force are plotted for the nominal and the two-vertex cases. It can be seen from Fig. 4 that
the responses of the sprung mass acceleration, the suspension deflection, the tyre deflection, and the active
force of active suspension are all similar to those shown in Fig. 3 in spite of the presence of time delay. It is
validated that the designed robust active suspension can achieve good suspension performance regardless of
the sprung mass variation and the actuator time delay within given bounds.

To clearly show the results, the maximum peak values of the bump responses for sprung mass acceleration,
suspension deflection, tyre deflection, and active force are listed in Table 2. From Table 2, it can be seen that
even when the actuator time delay presents, the maximum peak values realised by active suspension are similar
to those without time-delay cases.

Secondly, when the road disturbance is considered as random vibration, it is consistent and typically
specified as random process with a ground displacement power spectral density (PSD) of

SgðOÞ ¼

SgðO0Þ
O
O0

� ��n1

; if OpO0;

SgðO0Þ
O
O0

� ��n2

; if O4O0;

8>>><
>>>:

(44)
Table 3

Road roughness values classified by ISO

Degree of roughness SgðO0Þ ð10
�6 m3Þ

Road class B (Good) C (Average) D (Poor)

Range 8–32 32–128 128–512

Geometric mean 16 64 256
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Fig. 5. rms ratio between active suspension and passive suspension for sprung mass acceleration versus actuator time delay (full state

feedback control case).
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where O0 ¼ 1=2p is a reference spatial frequency, O is a spatial frequency. The value SgðO0Þ provides a
measure for the roughness of the road. n1 and n2 are road roughness constants. The ISO has proposed road
roughness classification using the PSD values as listed in Table 3.

In particular, for vehicle models, samples of the random road profiles can be generated using the spectral
representation method [31]. If the vehicle is assumed to travel with a constant horizontal speed v0 over a given
road, the road irregularities can be simulated by the following series

zrf ðtÞ ¼
XNf

n¼1

sn sinðno0tþ jnÞ, (45)

where sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SgðnDOÞDO

p
, DO ¼ 2p=L, L is the length of the road segment considered, o0 ¼ ð2p=LÞv0, jn is

treated as random variables following a uniform distribution in the interval ½0; 2pÞ, Nf limits the frequency
range to be considered.

In this paper, n1 ¼ 2, n2 ¼ 1:5, L ¼ 100, Nf ¼ 200 are used to generate the random road profiles. Taking
into account the random nature of the excitation applied, the root mean square (rms) for the random
responses of sprung mass acceleration, suspension deflection, and tyre deflection will be evaluated. For each
case, 50 random tests are used to compute the expected rms values.

To show the results clearly, we only plot the rms ratio between the active suspension and the passive
suspension for sprung mass acceleration in Fig. 5, where the sprung mass is given as the nominal value and
the two-vertex cases for one type of road roughness (C, average) and one selected vehicle forward velocity
72 km/h. It can be seen from Fig. 5 that in spite of the variation of sprung mass, the sprung mass acceleration
of active suspension is always less than the passive suspension (the response ratio is less than 1) within time
delay tp50ms. It shows that the designed active suspension could achieve good ride comfort performance
within the indicated delay bound in spite of the variation of sprung mass within allowable range.

Fig. 6 shows the PSD of sprung mass acceleration for the active suspension and the passive suspension. To
show the curves clearly, only those cases that the sprung mass is given as the nominal value and the two-vertex
cases are plotted, respectively. The road roughness (C, average), the vehicle forward velocity 72 km/h, and the
100 101
0

0.005

0.01

0.015

0.02

0.025

0.03
Passive (ms = 256)
Passive (ms = 320)
Passive (ms = 384)
Active (ms = 256)
Active (ms = 320)
Active (ms = 384)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 ((

m
/s

/s
)^

2/
H

z)

Frequency (Hz)

Fig. 6. PSD of sprung mass acceleration under a random road profile (C, average) at vehicle speed 72 km/h with time delay t ¼ 10ms

(full state feedback case).



ARTICLE IN PRESS
H. Du et al. / Journal of Sound and Vibration 317 (2008) 537–556552
actuator time delay t ¼ 10ms are used. It is clearly seen from Fig. 6 that the active suspension achieves a
significant improvement on ride comfort regardless of the sprung mass variation and the actuator time delay.

4.2. Static output feedback control case

In practice, not all the state variables are measurements available for control. Therefore, a static output
feedback parameter-dependent controller, which uses easily available measurements, needs to be designed. Since
the suspension deflection ðx1ðtÞÞ can be measured using suitable displacement transducer, and the sprung mass
acceleration can be straightforwardly measured using accelerometer, and in principle, the sprung mass velocity
ðx3ðtÞÞ can be obtained by integrating the sprung mass acceleration signal accordingly, we prefer to using
suspension deflection and sprung mass velocity as feedback signals to design such a static output feedback
controller. Using the same algorithm as presented in the last section with an appropriate C matrix given by

C ¼
1 0 0 0

0 0 1 0

� �

the static output feedback parameter-dependent controller gains are obtained as

K1 ¼ 103 � ½�4:9709 � 2:8662�; K2 ¼ 103 � ½�4:9356 � 2:3330�.
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Table 4

Comparison of maximum peak value for bump response (static output feedback control case)

Passive Active

t ¼ 0ms t ¼ 50ms

ms (kg) 256 320 384 256 320 384 256 320 384

_x3max ðm=s2Þ 5.2255 4.8756 4.4959 2.7887 2.6073 2.4723 2.8675 2.7631 2.6776

x1max (m) 0.0681 0.0799 0.0889 0.0465 0.0518 0.0561 0.0380 0.0438 0.0489

x2max (m) 0.0070 0.0080 0.0087 0.0040 0.0045 0.0050 0.0042 0.0048 0.0055

umax (N) – – – 650.87 694.34 712.87 669.88 738.29 780.75
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The performance evaluation of the designed controller is done similarly as that for full state feedback
control case. The bump responses are plotted in Figs. 7 and 8, for time delay as 0 and 50ms, respectively. The
maximum peak response values are given in Table 4. For designed active suspension, it can be seen that the
maximum peak values are similar for both t ¼ 0 and 50ms cases.
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The RMS ratio between the active suspension and the passive suspension for sprung mass acceleration for
one type of road roughness (C, average) and one selected vehicle forward velocity 72 km/h is plotted in Fig. 9,
where the sprung mass is given as the nominal value and the two-vertex cases, respectively. Similarly, it can be
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seen that the sprung mass acceleration of active suspension is less than the passive suspension within time
delay tp50ms.

Similarly, the PSD of sprung mass acceleration for the active suspension and the passive suspension is
shown in Fig. 10, where the cases that the sprung mass is given as the nominal value and the two-vertex cases
are plotted for clarity, and the road roughness (C, average), the vehicle forward velocity 72 km/h, and the
actuator time delay t ¼ 10ms are used. It can be seen that a significant improvement on ride comfort is
achieved by the active suspension regardless of the sprung mass variation and the actuator time delay.

The simulation results verify that, using the same algorithm, the designed static output feedback controller
can realise the similar performance to that of full state feedback controller when the sprung mass has
uncertainty and the actuator time delay is present.

5. Conclusions

This paper presents a parameter-dependent controller design approach for vehicle suspension with
considerations on changes in vehicle inertial parameters and existence of actuator time delays. In order to
reduce the conservativeness of the presented controller design conditions, parameter-dependent Lyapunov
functional is used. Based on the identification technique recently developed for accurate estimations of inertial
parameters, the presented parameter-dependent controller could be implemented in practice. Furthermore, the
controller that only uses the easily available measurements, such as sprung mass velocity and suspension
deflection, is designed in the same way. The designed controllers are applied to a quarter-car suspension model
with large change in sprung mass and large time delay in input. Numerical simulations have validated that the
vehicle suspension performance is improved with the designed controller in spite of the sprung mass variation
and actuator time delay.
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